Stranger Triumphs:
Automating Spark Upgrades
and Migrations at Netflix

Databricks Al Summit 2024

Holden Karau
Bobby Morck

Our
Problems

We have unsupported versions of Spark
in production

When things go wrong, Idon't remember
what we did ~5 months ago let alone ~5
years ago

They often seem to go wrong when we
are trying to focus or sleep

Spark 2 is very much EOLd, Spark 4 1s
coming soon

Why do we
have these
problems?

APls changes and code breaks

Keeping code up to date is not a lot of fun
Backporting 1s not fun

Candy is more fun than taxes*

Testing data pipelines wellis hard

Some of our data pipelines can have real
world impacts when they go wrong

How can we work around our problem?

Software:

e Automated Code Update Tools
o (Abstract Syntax Tree (AST)transforms, orregexes both are fine)

e Generated Tests
e Automated Testing and Validation

Social:

e Increase visibility of out of date code & change incentives

Ok social first:

@® Pcople are way harder than computers

e We gave a deadline (and slipped) like a "normal" project
e C(reated visibility

e Found org champions

Spark Migration
" Newsletter

Ok social first:

N Spark Migrations

DSE.PAA.TC_PROCESS_COLLECTION_D [sa. scals yiowonscheduter

f: Mar 31, 2024, 3:123:31 AM

Yigw oull cenyest in Siash

Spark jobs for this workflow

Migrated

Migrated

Job detail: DSE.PAA.Process_Collection_D_write

Status as of: Doc 18, 2023, 6:48:05 PM

Customize job verification and pull request

B
Data correctness verification:

Metadata:
Running basic checks for the table prodhive.dse.col : 31429350342 and 380762

Ba napshots b ame changed partitions

me parent sna

cdhive dse.collect

Bath the snapshets b y o partitions
pshets have the same schema

Both tha snapshots have the same parent snapshot

And now onto computers:

@® APlchanges (and updating your code)is annoying — we
can automate some ofthat

e Testing code you inherited is a nightmare, we can sort-of-
kind-of fake some ofthat (enough®)

Holden
Karau

I’'m on the Spark PMC (like tenure :p)
Worked on Spark for ~15 years

Co-author of Learning Spark (1sted),
High Performance Spark (I1sted and
working on 2nd ed)

Twitter: @holdenkarau, bluesky
holdenkarau.com, mastodon
@holden@tech.lgbt

OOS Livestreams:

https://youtube.com/user/holdenkarau
Github https://github.com/holdenk

Outside of work: Queer, Trans,
Motorcycles, My Dog

Engineer on the Big Data Compute
Team at Netflix

Focus on Spark, Hadoop, Iceberg

Outside of Work: Half-marathons,
various athletics, learning guitar

github: https://github.com/bmorck

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

How

Build an inventory of all Spark jobs, migration control and automation plane, spark job
validation, observability into migration process

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

How

Build an inventory of all Spark jobs, migration control and automation plane, spark job
validation, observability into migration process

Caveats

Validation tooling only compatible with Iceberg tables and non -deterministic output
cannot be validated, SparkSQL / PySpark only

Managed Migration Tooling continued

Managed Migration Tooling continued

Schedule Spark Job , VELLELS Depley Upelaisd
:) Performance and
For Migration Data Spark Code

Managed Migration Tooling continued

Schedule Spark Validate lterate on Deploy

Job For Performance Tooling / Updated Spark
Spark Job / Code

Spark Core

Migration and Data

Managed Migration Tooling continued

Dashboards
Migration Control /
Automation Plane
Code Updates

State Management

ETL Workflow Execution

Migration Ul

Communication

Code Hosts

Relational
Stores Warehouse

APACHE €

W
< trino Spar

Managed Migration Tooling continued

ETL Workflow Execution

Spark Inventory ETLs

Data
Warehouse

(.
@ trino K

Managed Migration Tooling continued

ETL Workflow Execution

Rest API

Migration Control /
Automation Plane

Code Updates

State Management

Communication

Spark Inventory ETLs
Relational Data

Stores Warehouse

\ 7 . X ¢
& trino Spark’

Managed Migration Tooling continued

ETL Workflow Execution

Rest API

Migration Control /
Automation Plane

Code Updates

State Management

Communication

Relational Data
Stores Warehouse

\ 7 . X ¢
& trino Spark’

Managed Migration Tooling continued

Dashboards
Migration Control /
Automation Plane
Code Updates

State Management

ETL Workflow Execution

Migration Ul

Communication

Code Hosts

Relational
Stores Warehouse

APACHE €

W
< trino Spar

Managed Migration Tooling continued

Spark Shadow and Validation Jobs Dashboards and Web Uls

REST / GraphQL APIs

Migration Control / Automation Plane

Data Warehouse / Relational Spark Code Hosts
Stores

Spark Inventory ETLs

Managed Migration Tooling continued

Spark Shadow and Validation Jobs Dashboards and Web Uls
REST / GraphQL APIs

Migration Control / Automation Plane

Data Warehouse / Relational Spark Code Hosts
Stores
Spark Inventory ETLs

Code
Update
Tools

@® Generally not regular expressions.

Scala: Spark Auto Upgrade (ScalaFix)
Python: PySparkler (libcst)

SQL: SQLFluff

Java: (skipped, we didn't have that many)
Check them out at

https://github.com/holdenk/spark-upgrade

https://github.com/holdenk/spark-upgrade
https://github.com/holdenk/spark-upgrade

How do you figure out the rules to
make?

@® Reclease notes (incomplete)
e Migration Manager (MIMA) changes (soooo many)
e Tryand see what's broken :p (aka YOLO)

Upgrading from Spark SQL 3.0 to 3.

¢ In Spark 3.1, statistical aggregation function includes std, stddev, stddev_samp, variance, var_samp, skewness,
kurtosis, covar_samp, corr will return NULL instead of Double.NaN when DivideByZero occurs during expression
evaluation, for example, when stddev_samp applied on a single element set. In Spark version 3.0 and earlier, it will
return Double.NaN in such case. To restore the behavior before Spark 3.1, you can set

spark.sql. legacy.statisticalAggregate to true.

In Spark 3.1, grouping_id() returns long values. In Spark version 3.0 and earlier, this function returns int values. To

restore the behavior before Spark 3.1, you can set spark.sql. legacy. integerGroupingId to true.

In Spark 3.1, SQL Ul data adopts the formatted mode for the query plan explain results. To restore the behavior
before Spark 3.1, you can set spark.sql.ui.explainMode to extended.

In Spark 3.1, from_unixtime, unix_timestamp,to_unix_timestamp, to_timestamp and to_date will fail if the

specified datetime pattern is invalid. In Spark 3.0 or earlier, they result NULL.

In Spark 3.1, the Parquet, ORC, Avro and JSON datasources throw the exception
org.apache.spark.sql.AnalysisException: Found duplicate column(s) in the data schema in read if they

detect duplicate names in top-level columns as well in nested structures. The datasources take into account the

SQL config spark.sql.caseSensitive while detecting column name duplicates.

3

[

[

£

Iy

[4

SparkSQL: Fix Group By Clause ®

32 by bmorck was merged on Apr 13, 2023 - Approved

SparkSQL: Improvements to lateral view, hints, sort by @

rck was merged on Apr 14, 2023 - Approved

SparkSQL: Improve window frame bounds e

#4722 by br

0

)23

1 Q 1task done

n Apr 12, 2

SparkSQL: Allow for any ordering of create table clauses e

#4721 by bmorck was merged on Apr 14, 2023

Approved O 1task done

SparkSQL: Add distinct to comparison operator @

#4719 by bmorck was merged on 1 Approved

SparkSQL: Fix file literal lexing ®

8 by bmorck was merged on Apr 11, 2023 - Approved

SparkSQL: Create external table support e

#4692 by bmorcl

vas merged on Apr 11, 2023 - Approved

SparkSQL: Add using and options clause to create view statement e

#4691 by bmorc

vas merged on Apr 8, 2023 - Approved

Support Spark Iceberg DDL @

#4690 by bmorck was merged on Apr 12,

3 « Approved

Remove TIME as reserved keyword in SparkSQL ®

#4662 by bmorck was merged on Apr 23 - Approved

Add support for non-quoted file paths in SparkSQL ®

#4650 by bmorch - Approved O 1task done

Add SparkSQL support for LONG primitive type @

#4639 by bmorck was

nerged on Mar 30, 2023 - Approved

QDa

A2

Qs

What do some rules look like?

e Let'sjustlook at SQL & Scala

SQL rules: It's like an AST transform but.... eh

SELECT approx_percentile(col, array(),) FROM VALUES (@),
AS tab(col); -

SELECT approx_percentile(col,) FROM VALUES (o), (6), (7), (9), (
tab(col); -

SELECT approx_percentile(col,) FROM VALUES (INTERVAL '@' MONTH), (INTERVAL 'I1'
MONTH) AS tab(col): -

SELECT approx_percentile(col, array()),) FROM VALUES (INTERVAL '@' SECOND),
(INTERVAL '0 00:00:01.000000000'), (INTERVAL '@ 00:00:02.000000000');

SQL rules: It's like an AST transform but.... eh

SELECT approx_percentile(col, array(), CAST(AS INT)) FROM VALUES (@),
(1), (2), (10) AS tab(col);

SELECT approx_percentile(col, , CAST(AS INT)) FROM VALUES (@), (6), (7),),
(10) AS tab(col);

SELECT approx_percentile(col, , CAST(AS INT)) FROM VALUES (INTERVAL '@' MONTH),
(INTERVAL "I' MONTH) AS tab(col);

SELECT approx_percentile(col, array(') CAST(AS INT)) FROM VALUES (INTERVAL
'0' SECOND), (INTERVAL '@ 00:00:01. @@@@@@@@@), (INTERVAL '@ 00:00:02.000000000');

SQL rules: It's like an AST transform but.... eh

def _eval(self, context: RuleContext) -> Optional[LintResult]:
functional context = FunctionalContext(context)
children = functional_context.segment.children()
function_name_id_seg = (
children.first(sp.is_type("function _name™))
.children()

first(sp.is_type("function name_identifier"))[0]

SQL rules: It's like an AST transform but.... eh

raw_function_name = function_name_id_seg.raw.upper().strip()
function_name = raw_function_name.upper().strip()
bracketed_segments = children.first(sp.is_type("bracketed"))
if function_name == "APPROX_PERCENTILE" or function_name == "PERCENTILE_APPROX":
expression_count = @
expression_segment = None
Find "middle" of the approx_percentile(bloop) (e.g. bloop)
for segment in bracketed_segments.children().iterate_segments(

sp.is_type("expression™)

SQL rules: It's like an AST transform but.... eh

expression_count += 1
if expression_count == 3:
expression_segment = segment
if expression_segment is not None:
expression_child = expression_segment.children().first()
cast can either be a keyword or a function depending on if were iterating on
parsed on updated code.
if expression_child[@].type == "keyword":
if expression_child.child[@].raw == "cast":

return None

SQL rules: It's like an AST transform but.... eh

elif expression_child[@].type == "function":
function_name_id_seg = (
expression_child.children()
first(sp.is_type("function_name"))
.children()

first(sp.is_type("function _name_identifier"))[0]

SQL rules: It's like an AST transform but.... eh

raw_function_name = function_name_id_seg.raw.upper().strip()
function_name = raw_function_name.upper().strip()
If we see a cast then we know this was already fixed.
if function_name == "CAST":
return None

expression_child = expression_child[0@]

SQL rules: It's like an AST transform but.... eh

KeywordSegment("“cast"),
SymbolSegment (" (", type="start bracket"),
expression_child,

WhitespaceSegment(),
KeywordSegment("as"),
WhitespaceSegment(),
KeywordSegment("int"),

SymbolSegment(")", type="end bracket"),

]
return LintResult(
anchor=context.segment,
fixes=[
LintFix.replace(expression_child, edits),

1,

What do they look like [Scala]

override def fix(implicit doc: SemanticDocument): Patch = {

val readerMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader")
val jsonReaderMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader.json")

val utils = new Utils()

def matchOnTree(e: Tree): Patch = {
e match {

case ns @ Term.Apply(jsonReaderMatcher(reader), List(param)) =>

What do they look like [Scala] continued

param match {
case utils.rddMatcher(rdd) =>

(Patch.addLeft(rdd, "session.createDataset(") +

Patch.addRight(rdd, ")(Encoders.STRING)") +

utils.addImportIfNotPresent(importer"org.apache.spark.sql.Encoders"))
case _ =>

Patch.empty

What do they look like [Scala] continued

case elem @ _ =>
elem.children match {
case Nil => Patch.empty

case _ => elem.children.map(matchOnTree).asPatch

matchOnTree(doc.tree)

}

How do we know if it worked?

@® Hopeisnotaplan

e Tests? (See https://github.com/holdenk/spark-testing-base)

e lakeFS,Iceberg, Delta, etc. + side by side runs
https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare

e Validation queries
o SodaCL
o https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html

o spark-expectations

https://github.com/holdenk/spark-testing-base
https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
https://github.com/sodadata/soda-core
https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
https://engineering.nike.com/spark-expectations/latest/

WAP to MAD

@® Write Audit Publish (WAP) v.s. Migrate Audit Discard (MAD)
o Write Audit Publish —popularized by Michelle Winters from Netflix in
her talk "Whoops the Numbers are Wrong."
e Different meaning of “Audit”

Is that expensive? Does it catch everything?

e Yes
o Beyond quadupling the cost for shadow jobs comparisons themselves took substantial
compute resources.

o Jobs with side effects
o Non-deterministic jobs (we catch this with a double run)
o etc.

Demo

Let's hope it doesn’t crash

Note: this is a demo of the OSS version of the tool, our internal version depends
on some extra internals “features” to go faster (insert engine noises)

Results

-

_

Total Spark Jobs Running on Spark

3.3*

29.8K

~

%

* Scheduled Spark Jobs

Total Custom
Spark Jobs
Running on Spark
3.3*

16.9K

Custom Spark Jobs

12500

10000

7500

5000

2500

0
SparkSQL

Results

-

Avg Spark 2.x Runtime:
811s

SparkSQL

Avg Spark 3.3 Runtime:
651s

_

~

%

-

Scala
1371s

669s

o

Avg Spark 2.x Runtime:

Avg Spark 3.3 Runtime:

-

Avg Spark 2.x Runtime:
747s

PySpark

Avg Spark 3.3 Runtime:
699s

o

Limitations

@® Code Update Tooling

o Notbeing able to mfertypes in code mod tooling
e Validation Tooling

o Not freezing snapshots

o Slow python UDFs
e Manual Supportin case of Validation Failure

Limitations

@udf (returnType=DecimalType(38, 0))
def compute_hash_using_deephash(val):
h = DeepHash(val, number_to_string_func=safe_number_to_string) [vall
Only take the first 22 digits in the integer and cast to a Decimal. We take 22 digits
to ensure that we have sufficient extra digits to store the summation of column
hashes. With 16 extra digits, we will be able to sum roughly a quadrillion hashes, which

we do not expect to exceed.
return Decimal(str(int(h, 16))[:22])

@udf (returnType=StringType())
def compute_row_hash_using_deephash(xcols):
precision = cols[-1]
cols = cols[:-1]
return DeepHash(cols, number_to_string_func=safe_number_to_string, significant_digits=precision) [cols]

Limitations: Incidental Fix for an Iceberg bu

@Override
public int read() throws IOException {
private int readWithRetry(final int retryCount) throws IOException {
if (retryCount > awsProperties.getS3ReadRetries()) {
throw new IOException("Failed to read from S3 after " + awsProperties.getS3ReadRetries() + " retries");

b

Preconditions.checkState(!closed, "Cannot read: already closed");
positionStream();

readBytes.increment();
readOperations.increment();

return stream.read();
try {
final int byteRead = stream.read();
pos +=
next += 1;
readBytes. increment();
readOperations.increment();
return byteRead;
catch (IOException e) {
LOG.warn("IOException while reading from S3. Attempting retry #{}", retryCount + 1, e);
// Retry connection reset. Prior call to positionStream() ensures
// we will start at the correct offset.
openStream();
return readwWithRetry(retryCount + 1);

PR T T T S S S S S S S

Ok, but where doesn't this work well?

@® Dependencies

e Programming language version change
o The reality is there's a lot of Scala 2.11 code out there, OSS resources are focused on
2.12->2.13 migration's but folks are further back
o Scala version change was the #2 reason blocking Spark upgrades for folks

In conclusion:

@® Greatsuccess! No*more Spark 2.X! Yay!
e Ifyou wantto upgrade Spark and are lazy —
https://github.com/holdenk/spark-upgrade

e Thanks to ouremplover (Netflix)and they are hiring

e The good news is we haven't made a system so powerfulwe can change
APIs without caring

e The bad news is the same

e The excellentnews is: Holden’s dog is cute AF

https://github.com/holdenk/spark-upgrade
https://jobs.netflix.com/

Looking to future migrations

Leverage OSS dataframe comparisons (available in Spark 3.5)
Leverage GenAlto automate spark config tuning

Smaller micro migrations to stay closer to the open source

Leverage GenAl to automate spark config tuning

Spark History Spark Conf

SparkLens* mmmns LLM Tooling g

Files Recommendations

* https://github.com/Netflix -Skunkworks/sparklens/tree/oss-main

Tips and Tricks

Caused by: java.lang.OutOfMemoryError:
memory.MemoryConsumer.allocateArray (MemoryConsumer.java:100)

at
at
at
at
at
at
at
at
Source)
at
Source)
at
at
at

org.
org.
org.
org.
org.
org.

org

org.

org.

org.
org.

apache.
apache.
apache.
apache.
apache.
apache.
.apache.
apache.

apache.

apache.

apache

spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.

spark.

spark.
.spark.

util.collection.unsafe.sort.UnsafeInMemorySorter.<init> (UnsafelInMemorySorter.java:
util.collection.unsafe.sort.UnsafeExternalSorter.<init> (UnsafeExternalSorter.java:
util.collection.unsafe.sort.UnsafeExternalSorter.create (UnsafeExternalSorter.java:
execution.window.WindowExecS$$Sanonfun$l4$Sanons$l. fetchNextPartition (WindowExec.
.execution.window.WindowExec$$anonfun$l4$$anons$l.next (WindowExec.scala:391)

.execution.window.WindowExec$$anonfun$l4$$anons$l.next (WindowExec.scala:290)

.catalyst.expressions.GeneratedClass$GeneratedIterator.agg doAggregateWithKeysl$ (Unknown

sgl.

sgl
sgl
sgl

sgl

sgl
sgl

Unable to acquire 16384 bytes of memory, got 0

org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8s$anons$l.hasNext (WholeStageCodegenExec.scala:379)

at
at
at
at
at
at
at
at
at

org.
org.
org.
org.

org

org.

apache.
apache.
apache.
apache.
.apache.
apache.

spark.
spark.
spark.
spark.
spark.
spark.

sgl.

hive.SparkHiveWriterContainer.writeToFile (hiveWriterContainers.scala:297)

154)
121)

scala:340)

.catalyst.expressions.GeneratedClass$GeneratedIterator.agg doAggregateWithKeys$ (Unknown

.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext (Unknown Source)
.execution.BufferedRowlIterator.hasNext (BufferedRowIterator.java:43)

sgl.hive.execution.InsertIntoHiveTable$$anonfun$l.apply (InsertIntoHiveTable.scala:218)
sgl.hive.execution.InsertIntoHiveTable$$anonfun$l.apply (InsertIntoHiveTable.scala:218)
scheduler.ResultTask.runTask (ResultTask.scala:87)
scheduler.Task.run (Task.scala:100)
executor.Executor$TaskRunner.run (Executor.scala:336)
java.util.concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor.java:1149)
java.util.concurrent.ThreadPoolExecutor$Worker.run (ThreadPoolExecutor.java:624)
java.lang.Thread.run (Thread.java:750)

Short Term Stop Gaps (e.g. Spark Conf Changes)

Change Broadcast Join Threshold (or disable in the case of high driver memory): spark.sql.autoBroadcastJoinThreshold
Disable AQE: spark.sql.adaptive.enabled

Driver Memory: spark.driver.memory

Executor Memory: spark.executor.memory

Executor Memory Fraction: spark.memory.fraction

Driver Memory Fraction: spark.driver.memoryOverhead

Adjust Number of Partitions: spark.sql.shuffle.partitions, spark.default.parallelism

Regressions

@® Caching SQL UNION ofdifferent column data types does not work inside
Dataset.union
o Fixed in Spark 3.5 (backported internally)
e Evaluate subquery before filter push down
o https://github.com/apache/spark/pull/43471

e Filter pushdown through project results in double evaluation
o https://github.com/apache/spark/pull/45802

Spark
Migration
GraphQL

Spark

= Migration Ul Shaton

Spark 2.x /
3.3 Job

Workflow
Scheduler /
Executor

Spark
Migration
REST API

Spark
Migration RDS

Migration Control Plane to Manage State
Transitions

Managed Migration Tooling continued

Netflix Data Warehouse

. Verification
Results DB

Various
Workflow
Metadata
ETL Jobs

. Various Internal
Feed tables [

	Slide Number 1
	Our Problems
	Why do we have these problems?

	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Holden Karau
	Slide Number 9
	Bobby
Morck
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Code Update Tools

	Slide Number 25
	Code Update Tools

	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Results

	Results
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Thank You.
	Looking to future migrations
	Leverage GenAI to automate spark config tuning

	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

