
Stranger Triumphs:
Automating Spark Upgrades
and Migrations at Netflix

Databricks AI Summit 2024

Holden Karau
Bobby Morck

We have unsupported versions of Spark
in production

When things go wrong, I don't remember
what we did ~5 months ago le t alone ~5
years ago

They often seem to go wrong when we
are trying to focus or s leep

Spark 2 is very much EOLd, Spark 4 is
coming soon

Our
Problems

APIs changes and code breaks

Keeping code up to date is not a lot of fun

Backporting is not fun

Candy is more fun than taxes*

Testing data p ipe lines we ll is hard

Some of our data p ipe lines can have real
world impacts when they go wrong

Why do we
have these
problems?

Software:

● Automated Code Update Tools
○ (Abstract Syntax Tree (AST) transforms, or regexes both are fine)

● Generated Tests
● Automated Testing and Validation

Social:

● Increase vis ib ility of out of date code & change incentives

How can we work around our problem?

Ok social first:
● People are way harder than compute rs
● We gave a deadline (and s lipped) like a "normal" project
● Created vis ib ility
● Found org champions

Ok social first:

And now onto computers:

● API changes (and updating your code) is annoying – we
can automate some of that

● Testing code you inherited is a nightmare , we can sort- of-
kind- of fake some of that (enough*)

I’m on the Spark PMC (like tenure :p)

Worked on Spark for ~15 years

Co- author of Learning Spark (1st ed),
High Performance Spark (1st ed and
working on 2nd ed)

Twitte r: @ holdenkarau, bluesky
holdenkarau.com, mastodon
@ holden@ tech.lgbt
OOS Livestreams:
https:/ /youtube .com/user/holdenkarau
Github https:/ /github.com/holdenk

Outside of work: Queer, Trans,
Motorcycles , My Dog

Holden
Karau

Engineer on the Big Data Compute
Team at Netflix

Focus on Spark, Hadoop, Iceberg

Outside of Work: Half- marathons,
various athle tics , learning guitar

github: https:/ /github.com/bmorck

Bobby
Morck

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

How

Build an inventory of all Spark jobs, migration control and automation plane, spark job
validation, observability into migration process

Managed Migration Tooling

Goal

Abstract and automate as much of the migration process away from our end users as
possible

How

Build an inventory of all Spark jobs, migration control and automation plane, spark job
validation, observability into migration process

Caveats

Validation tooling only compatible with Iceberg tables and non - deterministic output
cannot be validated, SparkSQL / PySpark only

Managed Migration Tooling continued

Schedule Spark Job
For Migration

Validate
Performance and

Data

Deploy Updated
Spark Code

Managed Migration Tooling continued

Schedule Spark
J ob For

Migration

Validate
Performance

and Data

Deploy
Updated Spark

Code

Ite rate on
Tooling /

Spark J ob /
Spark Core

Managed Migration Tooling continued

Managed Migration Tooling continued

Migration Control /
Automation PlaneCode Servers

Data
Warehouse

Relational
Stores

ETL Workflow Execution
Rest API

Dashboards

Migration UI

GraphQL API

Code Updates

State Management
Communication

Validation Spark Job

Shadow Spark Batch Jobs

Prod Spark Job

Spark Inventory ETLs
Code Hosts

Managed Migration Tooling continued

Code Servers

Data
Warehouse

ETL Workflow Execution

Spark Inventory ETLs

Managed Migration Tooling continued

Migration Control /
Automation PlaneCode Servers

Data
Warehouse

Relational
Stores

ETL Workflow Execution
Rest API

Code Updates

State Management
Communication

Spark Inventory ETLs

Managed Migration Tooling continued

Migration Control /
Automation PlaneCode Servers

Data
Warehouse

Relational
Stores

ETL Workflow Execution
Rest API

Code Updates

State Management
Communication

Validation Spark Job

Shadow Spark Jobs

Prod Spark Job

Spark Inventory ETLs

Managed Migration Tooling continued

Migration Control /
Automation PlaneCode Servers

Data
Warehouse

Relational
Stores

ETL Workflow Execution
Rest API

Dashboards

Migration UI

GraphQL API

Code Updates

State Management
Communication

Validation Spark Job

Shadow Spark Jobs

Prod Spark Job

Spark Inventory ETLs
Code Hosts

Managed Migration Tooling continued

Data Warehouse / Relational
Stores

Migration Control / Automation Plane

REST / GraphQL APIs

Spark Shadow and Validation Jobs

Spark Code Hosts

Spark Inventory ETLs

Dashboards and Web UIs

Managed Migration Tooling continued

Data Warehouse / Relational
Stores

Migration Control / Automation Plane

REST / GraphQL APIs

Spark Shadow and Validation Jobs

Spark Code Hosts

Spark Inventory ETLs

Dashboards and Web UIs

● Generally not regular express ions .
● Scala: Spark Auto Upgrade (ScalaFix)
● Python: PySparkle r (libcs t)
● SQL: SQLFluff
● J ava: (skipped, we d idn't have that many)
● Check them out at

https :/ / g ithub.com/holdenk/ spark- upgrade

Code
Update
Tools

https://github.com/holdenk/spark-upgrade
https://github.com/holdenk/spark-upgrade

How do you figure out the rules to
make?
● Release notes (incomple te)
● Migration Manager (MIMA) changes (soooo many)
● Try and see what's broken :p (aka YOLO)

Code
Update
Tools

What do some rules look like?
● Let's just look at SQL & Scala

SQL rules: It's like an AST transform but…. eh

SQL rules: It's like an AST transform but…. eh

SQL rules: It's like an AST transform but…. eh

def _eval(self, context: RuleContext) -> Optional[LintResult]:

functional_context = FunctionalContext(context)

children = functional_context.segment.children()

function_name_id_seg = (

children.first(sp.is_type("function_name"))

.children()

.first(sp.is_type("function_name_identifier"))[0]

)

SQL rules: It's like an AST transform but…. eh

raw_function_name = function_name_id_seg.raw.upper().strip()

function_name = raw_function_name.upper().strip()

bracketed_segments = children.first(sp.is_type("bracketed"))

if function_name == "APPROX_PERCENTILE" or function_name == "PERCENTILE_APPROX":

expression_count = 0

expression_segment = None

Find "middle" of the approx_percentile(bloop) (e.g. bloop)

for segment in bracketed_segments.children().iterate_segments(

sp.is_type("expression")

):

SQL rules: It's like an AST transform but…. eh

expression_count += 1

if expression_count == 3:

expression_segment = segment

if expression_segment is not None:

expression_child = expression_segment.children().first()

cast can either be a keyword or a function depending on if were iterating on

parsed on updated code.

if expression_child[0].type == "keyword":

if expression_child.child[0].raw == "cast":

return None

SQL rules: It's like an AST transform but…. eh

elif expression_child[0].type == "function":

function_name_id_seg = (

expression_child.children()

.first(sp.is_type("function_name"))

.children()

.first(sp.is_type("function_name_identifier"))[0]

)

SQL rules: It's like an AST transform but…. eh

raw_function_name = function_name_id_seg.raw.upper().strip()

function_name = raw_function_name.upper().strip()

If we see a cast then we know this was already fixed.

if function_name == "CAST":

return None

expression_child = expression_child[0]

SQL rules: It's like an AST transform but…. eh

edits = [

KeywordSegment("cast"),

SymbolSegment("(", type="start_bracket"),

expression_child,

WhitespaceSegment(),

KeywordSegment("as"),

WhitespaceSegment(),

KeywordSegment("int"),

SymbolSegment(")", type="end_bracket"),

]

return LintResult(

anchor=context.segment,

fixes=[

LintFix.replace(expression_child, edits),

],

)

What do they look like [Scala]

override def fix(implicit doc: SemanticDocument): Patch = {

val readerMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader")

val jsonReaderMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader.json")

val utils = new Utils()

def matchOnTree(e: Tree): Patch = {

e match {

case ns @ Term.Apply(jsonReaderMatcher(reader), List(param)) =>

What do they look like [Scala] continued

param match {

case utils.rddMatcher(rdd) =>

(Patch.addLeft(rdd, "session.createDataset(") +

Patch.addRight(rdd, ")(Encoders.STRING)") +

utils.addImportIfNotPresent(importer"org.apache.spark.sql.Encoders"))

case _ =>

Patch.empty

}

What do they look like [Scala] continued

case elem @ _ =>

elem.children match {

case Nil => Patch.empty

case _ => elem.children.map(matchOnTree).asPatch

}

}

}

matchOnTree(doc.tree)
}

How do we know if it worked?
● Hope is not a p lan
● Tests? (See https :/ / g ithub.com/holdenk/ spark- tes ting- base)
● lakeFS,Iceberg , De lta, e tc. + s ide by s ide runs

https :/ / g ithub.com/holdenk/ spark- upgrade / tree /main/p ipe linecompare
● Validation queries

○ SodaCL
○ https :/ / datatest.readthedocs.io/en/ lates t/ intro/p ipe line- validation.html
○ spark- expectations

https://github.com/holdenk/spark-testing-base
https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
https://github.com/sodadata/soda-core
https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
https://engineering.nike.com/spark-expectations/latest/

WAP to MAD

● Write Audit Publish (WAP) v.s . Migrate Audit Discard (MAD)
○ Write Audit Publish – popularized by Miche lle Winte rs from Netflix in

he r talk "Whoops the Numbers are Wrong."
● Diffe rent meaning of “Audit”

Is that expensive? Does it catch everything?

● Yes
○ Beyond quadupling the cost for shadow jobs comparisons themselves took substantial

compute resources.
● No

○ Jobs with side effects
○ Non-deterministic jobs (we catch this with a double run)
○ etc.

Demo

Let’s hope it doesn’t crash

Note: this is a demo of the OSS version of the tool, our internal version depends
on some extra internals “features” to go faster (insert engine noises)

Results

* Scheduled Spark Jobs

Total Spark Jobs Running on Spark
3.3*

29.8K

Total Custom
Spark Jobs
Running on Spark
3.3*

16.9K

Results

SparkSQL

Avg Spark 2.x Runtime:
811s

Avg Spark 3.3 Runtime:
651s

Scala

Avg Spark 2.x Runtime:
1371s

Avg Spark 3.3 Runtime:
669s

PySpark

Avg Spark 2.x Runtime:
747s

Avg Spark 3.3 Runtime:
699s

Limitations

● Code Update Tooling
○ Not be ing able to infe r types in code mod tooling

● Validation Tooling
○ Not freezing snapshots
○ Slow python UDFs

● Manual Support in case of Validation Failure

Limitations

Limitations: Incidental Fix for an Iceberg bug

Ok, but where doesn't this work well?

● Dependencies
● Programming language ve rs ion change

○ The reality is there 's a lot of Scala 2 .11 code out there , OSS resources are focused on
2 .12- >2 .13 migration's but folks are further back

○ Scala vers ion change was the #2 reason b locking Spark upgrades for folks

In conclusion:

● Great success! No* more Spark 2 .X! Yay!
● If you want to upgrade Spark and are lazy –

https :/ / g ithub.com/holdenk/ spark- upgrade
● Thanks to our employer (Ne tflix) and they are hiring
● The good news is we haven't made a sys tem so powerful we can change

APIs without caring
● The bad news is the same
● The exce llent news is : Holden’s dog is cute AF

https://github.com/holdenk/spark-upgrade
https://jobs.netflix.com/

Thank
You.

Leverage OSS dataframe comparisons (available in Spark 3.5)

Leverage GenAI to automate spark config tuning

Smalle r micro migrations to s tay close r to the open source

Looking to future migrations

* https://github.com/Netflix - Skunkworks/sparklens/ tree /oss- main

Leverage GenAI to automate spark config tuning

Spark History
Files SparkLens* LLM Tooling Spark Conf

Recommendations

Tips and Tricks

Caused by: java.lang.OutOfMemoryError: Unable to acquire 16384 bytes of memory, got 0
at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:100)
at org.apache.spark.util.collection.unsafe.sort.UnsafeInMemorySorter.<init>(UnsafeInMemorySorter.java:126)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.<init>(UnsafeExternalSorter.java:154)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:121)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.fetchNextPartition(WindowExec.scala:340)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.next(WindowExec.scala:391)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$14$$anon$1.next(WindowExec.scala:290)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys1$(Unknown

Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown

Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at

org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:379)
at org.apache.spark.sql.hive.SparkHiveWriterContainer.writeToFile(hiveWriterContainers.scala:297)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable$$anonfun$1.apply(InsertIntoHiveTable.scala:218)
at org.apache.spark.sql.hive.execution.InsertIntoHiveTable$$anonfun$1.apply(InsertIntoHiveTable.scala:218)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:100)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:336)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)

Short Term Stop Gaps (e.g. Spark Conf Changes)

Change Broadcast Join Threshold (or disable in the case of high driver memory): spark.sql.autoBroadcastJoinThreshold

Disable AQE: spark.sql.adaptive.enabled

Driver Memory: spark.driver.memory

Executor Memory: spark.executor.memory

Executor Memory Fraction: spark.memory.fraction

Driver Memory Fraction: spark.driver.memoryOverhead

Adjust Number of Partitions: spark.sql.shuffle.partitions, spark.default.parallelism

Regressions

● Caching SQL UNION of diffe rent column data types does not work ins ide
Datase t.union
○ Fixed in Spark 3 .5 (backported inte rnally)

● Evaluate subquery before filte r push down
○ https :/ / g ithub.com/apache / spark/pull/ 43471

● Filte r pushdown through project results in double evaluation
○ https :/ / g ithub.com/apache / spark/pull/ 45802

Managed Migration Tooling continued

	Slide Number 1
	Our Problems
	Why do we have these problems?

	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Holden Karau
	Slide Number 9
	Bobby
Morck
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Code Update Tools

	Slide Number 25
	Code Update Tools

	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Results

	Results
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Thank You.
	Looking to future migrations
	Leverage GenAI to automate spark config tuning

	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

